
Chapter 1

Modeling User Dynamics in
Collaboration Websites

Patrick Kasper, Philipp Koncar, Simon Walk, Matthias Wölbitsch, Tiago
Santos, Markus Strohmaier, and Denis Helic

Abstract Numerous collaboration websites struggle to achieve self-sus-
tainability—a level of user activity preventing a transition to a non-active
state. We know only a little about the factors which separate sustainable and
successful collaboration websites from those that are inactive or have a de-
clining activity. We argue that modeling and understanding various aspects
of the evolution of user activity in such systems is of crucial importance for
our ability to predict and support success of collaboration websites. Modeling
user activity is not a trivial task to accomplish due to the inherent complex-
ity of user dynamics in such systems. In this chapter, we present several
approaches that we applied to deepen our understanding of user dynamics
in collaborative websites. Inevitably, our approaches are quite heterogeneous
and range from simple time-series analysis, towards the application of dy-
namical systems, and generative probabilistic methods. Following some of our
initial results, we argue that the selection of methods to study user dynamics
strongly depends on the types of collaboration systems under investigation
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as well as on the research questions that we ask about those systems. More
specifically, in this chapter we show our results of (i) the analysis of nonlin-
earity of user activity time-series, (ii) the application of classical dynamical
systems to model user motivation and peer influence, (iii) a range of scenar-
ios modeling unwanted user behavior and how that behavior influences the
evolution of the dynamical systems, (iv) a model of growing activity networks
with explicit models of activity potential and peer influence. Summarizing,
our results indicate that intrinsic user motivation to participate in a collabo-
rative system as well as peer influence are of primary importance and should
be included in the models of the user activity dynamics.

1.1 Introduction

New collaboration websites continuously emerge on the Web. Users of such
communities work together towards a defined goal (e.g., building a knowl-
edge base), which sets collaboration websites apart from more common so-
cial networks. Whereas some collaboration websites reach a sufficient level of
user-activity to sustain themselves, preventing a transition towards inactiv-
ity, many websites perish over time or fail to establish an active community
at all. The Q&A platform StackOverflow1 is a successful example of such a
collaboration website. Users can ask questions on programming related top-
ics or share their knowledge by answering questions from other members of
the community. The explicit goal of the website states “With your help, we’re
working together to build a library of detailed answers to every question about
programming.”2. A declining community may struggle to meet this ambitious
goal in an ever-growing subject field such as programming. Thus, the success
of the StackOverflow website relies heavily on the active community collabo-
rating to answer any open questions. However, we as research community still
do not fully understand the factors that drive the users to participate and
contribute to such websites. This understanding would allow us to support
the website operators in their efforts to build a successful website around a
flourishing user community.

Initial work in this field frequently concentrated on interactions between
users on websites, or how information spreads through the community [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Nevertheless, to predict success and potentially
support websites in their efforts to reach self-sustainability, we argue that
understanding as well as modeling the various aspects of user dynamics that
go beyond information spreading is of crucial importance.

One of the major problems faced by both new and existing collaboration
websites—such as Wikipedia or StackOverflow—revolves around efficiently

1 https://stackoverflow.com/
2 https://stackoverflow.com/tour
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identifying and motivating the appropriate users to contribute new content.
In an optimal scenario, any newly contributed content provides enough in-
centive on its own, triggering further actions and contributions. Once such a
self-reinforced state of increased activity is reached, the system becomes self-
sustaining, meaning that sufficiently high levels of activity are reached, which
will keep the system active without further external impulses. StackOverflow
is an example for a highly active collaboration website that has already be-
come self-sustained (in terms of activity), evident in the steadily growing
number of supporters and overall activity.

However, these self-sustaining states [14, 15, 16, 17] are neither easy to
reach nor guaranteed to last. For example, Suh et al. [18] showed that the
growth of Wikipedia is slowing down, indicating a loss in momentum and
perhaps even first evidence of a collapse. Moreover, we generally lack the tools
to properly analyze these trends in activity dynamics and thus, cannot even
perform tasks such as detecting these self-sustaining system states. Therefore,
we argue that new tools and techniques are needed to model, monitor and
simulate the dynamics in collaboration websites.

In this chapter, we set out to shed further light on the complex user dy-
namics in collaboration websites. More specifically, to investigate the success
and failure of collaboration websites, we are interested in the factors that
govern growth and decline of the activity in such communities. Moreover, we
also aim at evaluating the robustness and stability of collaborative websites.
Approach. To this end, we present a diversified range of approaches, each
tackling different aspects of user dynamics in collaboration websites. We use
empiric data originating from various types of collaboration websites, such as
StackExchange instances and Semantic MediaWikis to report our findings.

We argue that there are two factors that influence the activity of any single
user in collaboration websites. First, the activity or rate of contributions of a
user is influenced by their intrinsic motivation to participate in a collaborative
community. This motivation may decay over time in a mechanism called
activity decay. A previously active user may lose interest in the community
and contribute less and less over time unless stimulated through other means.
This behavior has been observed in many different websites [18, 19, 17]. In
another scenario the intrinsic motivation of a user may remain constant or
even increase with time. We summarize this phenomenon as activity potential.
Second, peer influence is a mechanism in which users influence other members
of the community. For example, when users post a question to StackExchange
and receive helpful answers from other users, they may want to help others in
the same way by answering other open questions. Note, contributions by peers
are not necessarily always positive. Internet trolls may attempt to disrupt the
community by adding detrimental content [20].

We discuss these influential forces and their interactions by (i) applying
several tests for nonlinearity on the activity time series of various StackEx-
change instances to reveal complex user behavior. Thereafter, we (ii) apply a
dynamical systems model to investigate the long-term activity decay (users
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losing interest over time) and how this decay is countered by the peer in-
fluence from the other users. Iterating upon this idea of peer influence we
(iii) conduct experiments investigating the influence of trolls who spread
negative activity through peer influence by adding detrimental content to
the websites, and lastly, we (iv) present a generative probabilistic model to
create synthetic activity networks and study the emergence of clustering in
the underlying user networks.
Contribution. This chapter provides an overview of several methods and
ideas concerning dynamics in collaboration websites. Further, we shed light
on some factors contributing to their eventual success or failure. We sum-
marize our main findings as follows. Models incorporating the user-centered
concepts of user motivation and peer influence can capture crucial aspects
regarding activity in collaboration websites, such as system robustness and
stability. Further, depending on a particular community that we investigate
the technical approaches and models need to be carefully chosen.

1.2 Related Work

Analysis of Online Communities. We know that, at some point in time,
well-established collaboration websites, such as StackOverflow, have become
self-sustained. There, sufficiently high levels of activity are reached, which
will keep the system active without further external impulses. However, many
websites never reach this state and those that do, are not guaranteed to re-
main there indefinitely [14, 15, 16, 17]. With the continuous growth in the
number of such websites, many researchers have investigated these commu-
nities to better understand the dynamics governing growth and decline. For
example, Schoberth et al. [21] and Crandal et al. [22] analyzed time-series
data of websites to investigate the communication activities and social in-
fluences of their users. Analyzing the roles different types of users play, re-
searchers characterized the users to infer properties about their communities
as a whole [23, 24, 25, 26]. Using methods related to the work by Zhang et
al. [27], multiple authors studied the evolution-dynamics of Web communities
and their underlying networks [28, 29, 30, 31, 32, 33]. These networks often
serve as a basis for dynamical systems models of the communities.
Nonlinear Time Series Analysis. To obtain a better understanding of the
properties in high-dimensional dynamical systems, researchers have utilized
nonlinear time series analysis. Bradley and Kantz [34] provided a thorough
overview of applied nonlinear time series analysis. The works by Eckmann et
al. [35] and Marwan et al. [36] described the use of Recurrence Plots to visu-
ally analyze complex systems. Zbilut and Webber [37, 38] further extended
these visualizations with a method called Recurrence Quantification Analysis
(RQA). These tools provided means to, for example, investigate the chaotic
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behavior in stock markets [39, 40] or predict the outcome of casino games,
such as a roulette wheel [41].

Here, we present work employing various tests for nonlinearity to reveal
latent nonlinear behavior in collaborative websites and their communities.
Dynamical Systems & Activity Dynamics. Dynamical systems in a
non-network context are a well-studied scientific and engineering field. Stro-
gatz [42] and Barrat et al. [43] provided an in-depth introduction to dy-
namical systems. Within the contextual scope of online communities, re-
searchers primarily used dynamical systems to analyze and understand the
diffusion of information in online social-networks for purposes such as viral
marketing [9, 10, 11, 12, 13]. Recently, in the context of activity dynamics,
Ribeiro [31] conducted an analysis of the daily number of active users that
visit specific websites, fitting a model that allows predicting if a website has
reached self-sustainability, defined by the shape of the curve of the daily
number of active users over time.

In this chapter, we present a model to simulate activity as a dynamical
system on online collaboration networks. Here, two forces, decay of motiva-
tion and peer influence govern the activity-potential of users. Moreover, we
describe work on how these concepts facilitate the generation of synthetic net-
works. Online communities becoming increasingly accostable to their users
does not always lead to higher overall activity. Internet trolls, for example,
generate unwanted content [44, 45, 46, 47, 48, 20], creating additional strain
for others who attempt to keep the community healthy.

Thus, we present an extension to the previous model incorporating the
idea of trolls emitting negative peer influence and discuss how such negative
activity can impact the user dynamics in collaboration websites.

1.3 Datasets

The Web offers a multitude of ways in which people can communicate and
collaborate in a group. To capture some of this diversity, we utilize empirical
datasets stemming from different types of collaboration websites. Here, we
provide a general overview of the empiric datasets in our experiments, and
how we extract the user networks from the raw data.

StackExchange instances. StackExchange is a network of currently 172
Question & Answer communities. Here, users can post questions and
other members of the community can provide and discuss answers. Some
of the most popular instances are StackOverflow3 and the English Stack-
Exchange4. We extract the network by representing each user with a node
and draw an edge whenever user A replies to a post by user B. The full

3 https://stackoverflow.com/
4 https://english.stackexchange.com/
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dataset from which we draw our networks is publicly available5. We de-
note these datasets with a SE suffix. For example, we call the network
extracted from the English StackExchange as englishSE.

Semantic MediaWikis. The Semantic MediaWiki6 is an extension to the
MediaWiki software and allows for storing and querying structured data
within the Wiki. We build the community network by representing each
contributor with a node and draw an edge whenever two users work on
the same page. We collected the data we use in our experiments from the
live MediaWiki API, which is now unavailable. However, a comprehensive
dump of the Semantic MediaWiki is publicly available7. We denote these
datasets with a MW suffix. For example, we call the network extracted
from the Neurolex Semantic MediaWiki as neurolexMW.

SubReddits. A SubReddit is a community within Reddit for a specific topic.
While some of these communities act as recommendation platforms or
Q&A sites akin to StackExchange, others aim to facilitate a platform for
open discussion of various topics. We extract a network from a SubReddit
by representing each user with a node and draw an edge when one user
replies to a post by another user. These dumps from Reddit are publicly
available8. We denote these datasets with a SR suffix. For example, we
call the network extracted from the Star Wars Subreddit as starwarsSR.

1.4 Complex User Behavior in Collaboration Websites

As a first step towards the goal of identifying factors indicating successful or
failing collaboration websites, we set out to identify complex (nonlinear) user
behavior present in the data. To reveal and characterize any hidden nonlin-
ear patterns, we construct the activity time series from the datasets of 16
randomly selected StackExchange instances and conduct a set of nine estab-
lished tests for nonlinearity on them. This information allows for a decision
on whether a standard time-series model such as the AutoRegressive Inte-
grated Moving Average (ARIMA) is sufficient to capture and predict activity,
or more complex approaches (e.g., dynamical systems) should be employed.
Activity time series. We construct the activity time series from a dataset
by first measuring the activity—the number of questions, answers, and
comments—per day. To remove outliers in the data we smooth the time series
with a rolling mean over a seven-day period. Finally, we calculate the sum of
the smoothed activity over all users per week, yielding a time series with one
entry per week representing the activity in the corresponding community.

5 https://archive.org/details/stackexchange
6 https://www.semantic-mediawiki.org
7 https://archive.org/details/wiki-neurolexorg_w
8 https://files.pushshift.io/reddit/
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Experiments & Results. To reveal hidden nonlinear patterns in our ac-
tivity time series, we apply the following tests for nonlinearity on each
dataset and report the results: (i) Broock, Dechert and Scheinkman test [49];
(ii) Teraesvirta neural network test [50]; (iii) White neural network test [51];
(iv) Keenan one-degree test for nonlinearity [52]; (v) McLeod-Li test [53];
(vi) Tsay test for nonlinearity [54]; (vii) Likelihood ratio test for threshold
nonlinearity [55]; (viii) Wald-Wolfowitz runs test [56, 55]; (ix) Surrogate test
- time asymmetry [57].

We apply these tests without configuration changes, except for the Broock,
Dechert, and Scheinkman and Wald-Wolfowitz runs tests. As described in
Zivot and Wang [58, p. 652], we compute the test statistic of Broock, Dechert,
and Scheinkman on the residuals of an ARIMA model, to check for nonlin-
earity not captured by ARIMA. For the Wald-Wolfowitz runs test, since a
run represents a series of similar responses, we define a positive run as the
number of times the time series value was greater than the previous one [59].

To validate the plausibility of this categorization we compare the forecast
performance from three standard time series models, namely ARIMA, expo-
nential smoothing models (ETS), and linear regression models, with nonlinear
models, reconstructed from the observed activity time series.

Table 1.1 lists test results on the 16 StackExchange instances. Our results
reveal that on the one hand, there are StackExchange communities with
mostly linear behavior, such as englishSE and unixSE as only two tests sug-
gest nonlinearity. On the other, we see that for the communities bicycleSE,
bitcoinSE, and mathSE the majority of tests suggest nonlinearity.

Table 1.1: Results of statistical tests. This table lists the activity time series length in
weeks, embedding parameters τ and m, the number and reference of statistical tests indicating
nonlinearity (α = 0.05), and the RMSE (lower is better) of a 1 year forecast per model for each
dataset. Further it lists the ranking the Friedman test for datasets with less than or five or more
tests suggesting nonlinearity. The indices refer the individual tests as listed in Section 1.4.

Dataset Weeks τ m
Nonlin.

test score
Positive

non-linearity tests
RMSE

ARIMA ETS Linear Nonlin.

englishSEb 240 2 9 2/9 (i),(v) 0.679 0.445 0.332 0.308

unixSEb 239 1 7 2/9 (i),(v) 0.209 0.209 0.241 0.207

chemistrySEb 158 2 7 3/9 (i),(v),(viii) 0.498 0.253 0.324 0.461
webmastersSE 244 1 8 3/9 (iv),(v),(ix) 0.231 0.252 0.334 0.234
chessSE 148 2 8 4/9 (i),(iv),(v),(ix) 0.254 –a 0.562 0.511
historySE 177 1 9 4/9 (i),(iv),(v),(viii) 0.350 0.236 0.304 0.405
linguisticsSE 181 2 6 4/9 (i),(iv),(v),(ix) 0.251 0.270 0.300 0.328
sqaSE 200 3 9 4/9 (i),(iv),(v),(ix) 1.813 0.253 0.654 0.390

texSEb 241 1 7 4/9 (v),(vi),(viii),(ix) 0.158 0.158 0.276 0.275
tridionSE 107 1 7 4/9 (ii),(iii),(iv),(v) 0.271 –a 0.614 –a

Friedman test rank on datasets with nonlin. test score < 5/9 2 1 4 3

arduinoSE 56 1 10 5/9 (i),(ii),(iii),(iv),(v) 0.348 –a –a –a

sportsSE 159 1 7 5/9 (i),(iv),(v),(viii),(ix) 0.244 0.334 0.401 0.332
uxSE 239 2 8 5/9 (i),(iii),(iv),(v),(vi) 0.347 0.174 0.349 0.137
bitcoinSE 182 4 11 6/9 (i),(ii),(iii),(iv),(v),(ix) 0.609 0.554 0.593 0.578

mathSEb 242 2 8 6/9 (i),(ii),(v),(vi),(viii),(ix) 0.132 0.231 0.352 0.291
bicyclesSE 235 2 7 7/9 (i),(ii),(iii),(iv),(v),(viii),(ix) 0.297 0.309 0.325 0.280

Friedman test rank on datasets with nonlin. test score ≥ 5/9 2c 2c 4 1

a This activity time series is too short for a 1 year forecast with this model.
b This activity time series had a strong linear trend, so the results above concern the activity time series
detrended with linear regression.
c These models achieved the same rank in the Friedman test for this group of datasets.
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Fig. 1.1: Recurrence Plots (RP) for activity time series. This figure illustrates the Re-
currence Plots of the bitcoinSE and mathSE websites. Figure 1.1b shows a higher density of
recurrence points in the upper left corner, gradually diminishing towards the lower right; this
is a sign of a drift in the activity time series, still present after removing the linear trend. Both
examples hint at non-stationary transitions in the activity time series.

A higher number of tests suggesting nonlinearity for a community indicates
a better fit for models based on nonlinear time-series analysis. The prediction
experiments and the Friedman test ranks [60] on datasets with mostly nega-
tive test results (less than five) indicates that for these communities ARIMA
and ETS models result in the best fit. For the other datasets (more than four
positive tests), nonlinear models yield the lowest error.

The nonlinearity tests by Lee et al. [51] and Teräsvirta et al. [50] utilize
neural networks and appear to be more sensitive to the presence of nonlinear
dynamics than the other tests, since they test positive for nonlinearity four
times more often in the dataset group with five or more tests indicating
nonlinearity than in the other dataset group. We attribute the usefulness
of these two tests to the well-studied ability of neural networks to model
nonlinear behavior.

In a second experiment, we use with Recurrence Plots [36] to analyze the
nonlinear properties for two exemplary StackExchange instances bitcoinSE,
and mathSE. Both websites have a high number of positive nonlinearity tests.

Figure 1.1 illustrates the results for these two instances. Despite having
the same number of positive tests for nonlinearity, these visualizations depict
different patterns in their activity. In particular, Figure 1.1b shows a higher
density of recurrence points in the upper left corner, gradually diminishing
towards the lower right corner. This structure reveals a drift pattern which
is present even after linear detrending.
Findings. We find that we can model activity on collaboration websites
through reconstruction of their underlying, dynamical systems, with some
communities showing more signs of nonlinear behavior than others. In par-
ticular, the knowledge of any drift- or periodicity patterns in the data provides
information on which approach may yield the best accuracy.

For a more detailed discussion of the topic refer to Santos et al. [61].
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1.5 Activity Decay & Peer Influence

On collaboration websites contributing users tend to lose interest over time.
Wikipedia is a prominent example of such a website with a declining user-
base [19]. To address this problem, we present a model based on dynamical
systems where the motivation of a user decays over time (intrinsic activity
decay). Danescu-Niculescu-Mizil et al. [25] were able to observe this behavior
across different online communities. However, in our proposed model, users
also gain activity from their neighbors through peer-influence to compensate
for the intrinsic decay, which builds upon the notion that people tend to copy
their friends and peers [62, 63, 64]. This activity dynamics model is capable of
capturing and simulating activity in collaboration websites. We fit this model
to a number of StackExchange instances and Semantic MediaWikis to sim-
ulate trends in activity dynamics. Further, we utilize the model to calculate
a threshold indicating self-sustainability. Being able to monitor and measure
the stability of a website with regards to user activity indicates how suscepti-
ble a system is to fluctuating members. For example, in a volatile website, a
small number of highly active users (emitting a lot of peer influence) leaving,
could result in activity decreasing to the point of total inactivity.
Dynamical Systems. The proposed model utilizes the formalism of dy-
namical systems—meaning that activity is modeled by a system of coupled
nonlinear differential equations. Each user in the system is represented by
a single quantity (the current activity), and the collaborative ties between
users define the coupling of variables.

The model builds on two mechanisms which postulate that with time users
lose interest to contribute and that, on the other hand, users are influenced
by the actions taken by their peers.
Modeling activity. We model activity dynamics in an online collaboration
network as a dynamical system on a network. Hereby, the nodes of a network
represent users of the system and links represent the fact that the users have
collaborated in the past. We represent the network with an n× n adjacency
matrix A, where n is the number of nodes (users) in the network. We set
Aij = 1 if nodes i and j are connected by a link and Aij = 0 otherwise.
Since collaboration links are undirected, the matrix A is symmetric, thus
Aij = Aji, for all i and j.

We model activity as a continuous real-valued dimensionless variable xi
(representing ratio of the current activity of user i over some critical activity
threshold) evolving on node i of the network in continuous dimensionless time
τ . We write the time evolution equation as follows:

dxi
dτ

= −λ
µ
xi +

∑
j

Aij
xj√

1 + x2
j

. (1.1)

There is only one parameter in our dynamics equation, namely the ratio
λ/µ. This is a dimensionless ratio of two rates: (i) The Activity Decay Rate
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Fig. 1.2: Activity simulation. The figure depicts the results of our activity dynamics simu-
lation for the StackExchange datasets and Semantic MediaWikis. In all our analyzed datasets,
the simulated activity dynamics exhibit a notable resemblance to the empirical activity.

λ, which is the rate at which a user loses activity (or motivation), and (ii) the
Peer Influence Growth Rate µ, which is the rate at which a user gains activity
due to the influence of a single neighbor.

The ratio between those two rates is the ratio of how much faster users lose
activity due to the decay of motivation than they can gain due to positive
peer influence of a single neighbor. For example, a ratio of λ/µ = 100 would
mean that the users intrinsically lose activity 100 times faster than they
potentially can get back from one of their neighbors.

The master stability equation for our activity dynamics model is

κ1 <
λ

µ
, (1.2)

where κ1 is the largest positive eigenvalue of the graph adjacency matrix. Note
that this inequality separates the network structure (κ1) from the activity
dynamics (λ/µ). If this stability condition is satisfied, the fixed point x∗ = 0,
in which there is no activity at all (“inactive” system), represents a stable
fixed point. This also means that small changes in activity only cause the
system to momentarily leave the (attracting) fixed point until it becomes
inactive again.
Experiments & Results. To estimate λ/µ for the empirical datasets we em-
ploy an output-error estimation method. First, we formulate the estimation
of the model parameter as an optimization problem. As objective function,
we use a least-squares cost function. Second, we solve the optimization prob-
lem numerically, using the method of gradient descent in combination with
the Newton–Raphson method [65] to speed up the calculations. Finally, we
evaluate the accuracy of the ratio estimate by calculating prediction errors
on unseen data.

This prediction serves as a demonstration that our assumptions regard-
ing the Activity Decay Rate and the Peer Influence Growth Rate hold and
allow us to simulate trends in activity dynamics for given and real values.
The simplifications, such as the static network structure and average model
parameters over weeks and users, entail that any results cannot be used for
an accurate prediction of the activity in the system, and naturally limit the
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Fig. 1.3: Evolution of ratios λ/µ. The evolution of the ratios λ/µ (y-axes) over τ (in weeks;
x-axes) for the StackExchange datasets and for the Semantic MediaWikis. The smaller the ratio,
the higher the levels of activity in Figure 1.2. Small variances in λ/µ over time indicate that
activities of the systems are less influenced by the activity of single individuals than they are
by peer influence.

accuracy of our results. These limitations are particularly visible whenever
there are large and sudden increases in activity in the collaboration websites.
Figure 1.2 depicts the results of the activity dynamics simulation. Overall,
the results gathered from the activity dynamics simulation exhibit notable
resemblance to the real activities of the corresponding datasets. Note how in
some cases our simulation yields a higher activity increase than the real data
(e.g., Figure 1.2c). A possible cause for this behavior is the static network
structure where users might be influenced by peers who actually join the
network at a later point in time.

Figure 1.3 depicts the value of the calculated ratios λ/µ (y-axis) for each
week (x-axis) of our activity dynamics simulation. If the ratio is higher than
κ1, our master stability equation holds, and the system converges towards
zero activity (over time). The amount of activity that is lost per iteration—
and hence the speed of activity loss—is proportional to the value of the ratio
and the activity already present in the network. In general, a higher ratio
results in a higher and faster loss of activity.

If the ratio is smaller than κ1, the master stability equation has been inval-
idated and the system will converge towards a new fixed point of immanent
activity (cf. Equation 1.2). Robust systems are lively and high levels of activ-
ity, which are able to keep that activity even in the cases of small unfavorable
changes in the dynamical parameters.

Note that one advantage of our model over other existing approaches, such
as autoregression, is the interpretability of the ratio λ/µ. For example, a ratio
of 4 means that users intrinsically lose activity 4 times faster than they can get
back from one of their peers, while the coefficients of the autoregression lack
such interpretable characteristics. Further, using the concept of dynamical
systems we can represent the underlying mechanisms in a closed form. This
allows for further detailed analytical inspections, such as a linear stability
analysis, which is much harder, if not impossible, to conduct for other models
(i.e., agent-based models, autoregression or more complex models based on
dynamical systems).
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Practical Implications. Using our proposed model, we can characterize
networks based on their susceptibility to changes in activity (referred to as
Activity Momentum in [32]). Hence, community managers could use the pro-
posed model as indicator for the robustness of their collaboration website
with regards to its activity dynamics.

Further, we can characterize the potential of a collaboration network to
become self-sustaining by comparing the calculated ratios of λ

µ with the cor-
responding κ1 and the susceptibility to changes in user activity of the col-
laboration network. If the ratio is below κ1, our master stability equation is
invalidated, pushing the system towards a new fixed point where the forces
of the Activity Decay Rate and the Peer Influence Growth Rate reach an
equilibrium so that the network converges towards a state of immanent and
lasting activity. If such a state is reached combined with a low susceptibil-
ity to changes in user activity, the corresponding collaboration network has
reached critical mass of activity and has become self-sustaining; no external
impulses are required to keep the network active.

Of course, in real-world scenarios, activity will not last forever without
providing additional incentives (e.g., user profile badges displaying support
or expertise), as interest (and thus activity) in a system potentially decays
over time. As a consequence, this would first result in an increase of µ and
inevitably, with a sufficiently large µ, the collaboration network would return
to its stable fixed point, once our master stability equation holds again, and
activity would once more converge towards zero.
Findings. Using our proposed model to simulate activity dynamics, we show
that the overall activity in collaboration websites appears to be a composite of
the Activity Decay Rate and the Peer Influence Growth Rate. A first analysis
of the model suggests that activity dynamics in collaboration networks have
an obvious and natural fixed point—the point of complete inactivity—where
all contributions of the users have seized. However, by slightly manipulating
the parameters in our model we show that it is possible to destabilize the
fixed point, resulting in a potential increase in activity.

For a more detailed presentation and discussion of factors such as System
Mass and Activity Momentum, see Walk et al. [32].

1.6 Negative Activity in Collaboration Websites

While most users in collaboration networks contribute by adding helpful
content—in the case of StackExchange by asking questions or providing help-
ful answers—Internet Trolls post unwanted content for their own amuse-
ment [20]. We investigate such unwanted users and how they affect collabo-
ration websites by adapting the Activity Dynamics model presented in Sec-
tion 1.5. Thus far, we considered peer influence as a purely positive force. In
this proposed modification, introduced trolls emit negative activity to their
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Fig. 1.4: Effects of trolls on total system activity. This figure depicts the impact trolls
have for the first weeks after their introduction to the network. When trolls connect to highly
active users (informed strategy) the effect on the systems activity is minimal, whereas with the
random connection strategy we observe a noticeable impact on the activity in the network.

neighbors. As an example, a troll may post a nonsensical question on Stack-
Exchange, or deliberately post wrong answers. Other users now have to spend
time to either report or remove the unwanted post. We argue that this con-
sumes the time these users could have potentially used to answer an open
question. Understanding how trolls can disrupt the activity in collaboration
websites can be used to derive strategies to prevent or minimize their impact.
Modeling Troll-Users. We model the impact of disruptive content in the
form of negative activity. A troll-user emits negative activity to their con-
nected users and simultaneously receive productive positive activity as their
neighbors try to compensate for it. Further, we argue that trolls commit to
their cause and therefore do not lose motivation on their own. Thus, we dis-
able the motivation decay for these users. Within a network, we define the
total number of normal users as N and the number of trolls as T . Thus, N
remains constant regardless how many trolls enter the network.

Whenever a troll enters a network at the beginning of our experiments,
they connect to a number of existing users (α). We define two methods for
this process; First, with the random strategy the troll connects to other users
uniformly at random (P = α

N ). To achieve this, the troll may extract a
list of all users within the network and then perform a random selection.
Second, with the informed strategy the troll specifically targets and connects
to highest degree users. Here the troll observes the collaboration website for
some time before selecting their targets according to this strategy.

The negative activity of a troll absorbs the positive activity spread via peer
influence. Note that, when a normal user receives enough negative activity,
their own activity can become negative for some time. Whenever the incoming
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peer influence received by a troll exceeds their outgoing activity, the troll is
defeated, and we remove their corresponding node from the network.
Experiments & Results. In this experiment, we aim to determine how
trolls affect the overall activity in networks. For the initial 39 weeks we calcu-
late the activity within a network unaltered (akin to the model in Section 1.5).
After this point, we introduce the troll-users and observe their impact. For
each troll, we set their starting activity at week 40 to −5 and conduct each
experiment twice. Once, with trolls following the random strategy, and once
with informed connection strategy. Further, we fix the parameter α (number
of connections per troll) to be equal to the mean degree of all existing users.
In total, we add trolls equal to the of 0.25%, 0.50%, and 1.00% of existing
users (N) and investigate their initial impact.

Figure 1.4 illustrates the simulated system activity for the first three weeks
after we add the trolls to the networks. Our results suggest, that trolls con-
necting to highly active users do not affect the overall activity in the network.
We attribute this to the peer influence emitted by the troll being comparably
insignificant. However, when we connect the trolls at random, users are more
heavily influenced. A sporadic contributor may lose interest upon exposure
to trolls. Small, but well-connected networks may lack a sizable body of ca-
sual users. Figure 1.4b illustrates such a network (neurolexMW). Due to this
strong structure, newly introduced trolls fail to disrupt the system regardless
of their connection strategy.
Findings. Up to a threshold, highly active users can compensate for the neg-
ative activity trolls emit, whereas random users can be more susceptible and
may even temporarily spread negative content on their own further reduc-
ing the activity in a network. Below this threshold, the negative activity is
nullified over time. However, once enough trolls connect to the highly active
users within a network and overwhelm their positive activity, the networks
collapse rapidly, ending all productive contribution.

Based on these findings, website administrators may entrust highly active
users to moderate their communities. These moderators would be instructed
in how to deal properly with occurring trolls, making them less susceptible
for distractions (unproductive activity). Additionally, moderators could sup-
port peripheral users targeted by trolls and handle other detrimental factors,
such as spam bots or illegal content. Offering incentives, such as additional
functionality on their website or even money, could help motivating users to
become moderators. A different approach would be to use machine learning
techniques to automatically detect occurring trolls, for example, by identify-
ing fake profiles [66] or by inspecting textual contents of comments [67, 68].

For further discussion of this subject and experiments on how trolls affect
and infect users, see Koncar et al. [69].



1 Modeling User Dynamics in Collaboration Websites 15

2

14

2
1 9

12

1

30

(a) t = x

2

15

2
1 9

12

1

30

(b) t = x

2

15

2
1 9

12

1

30

(c) t = x+ 1

Fig. 1.5: Illustrative model example. The highlighted node in Fig. 1.5a becomes active and
interacts with the second highlighted node in Fig. 1.5b, reinforcing the tie between them. The
outlines in Fig. 1.5c depict the additional peer-influenced activation probability in the next
iteration.

1.7 Peer Influence in Temporal Networks

Thus far, we have represented the collaboration websites and their user net-
works in a static form. However, in the real world, new users frequently join
the communities, while other members leave after a while. We approach this
dynamic user-base by presenting a generative model to create synthetic net-
works. Existing network generators incorporating the concept of activity often
solely consider the intrinsic activity potentials as sources of activity [70, 71].
But, we have shown in the previous sections, that interaction between users
is an important factor to consider. Thus, we present a generative model that
incorporates peer influence (similar to Section 1.5) and tie strength (how
frequent two users interact) as explicit mechanics. With this model for gen-
erating synthetic networks we are able to explore new ideas and conduct
experiments before verifying them on empiric networks.
Generating activity networks. We model the influence that a node re-
ceives from their neighbors in each time step (iteration t) as the increase
in the activity potential according to the number of active neighbors in the
previous iteration (t− 1) and the tie strengths.

The equation for the peer influence for a node vi is:

pi(t) =
αi(t) q√
α2
i (t) + θ2

, (1.3)

where αi(t) is the weighted fraction of active neighbors and q is the parameter
for the maximum peer influence. Further, (θ > 0) denotes a critical threshold,
determining the required fraction of active neighbors to set the peer influence
probability close to this maximum.

Any node can become active based on either their own intrinsic activity
or on the peer influence. When they do they select a new node as the partner
for the interaction and either create or reinforce the tie between them.

The resulting network exhibits structures seen in real-world networks, due
to the partner selection, which follows a set of rules. First, a memory effect
as described by Karsai et al. [72] (depending on the number of currently



16 Kasper et al.

q = 0.15 q = 0.10 q = 0.05 q = 0.01 q = 0.00

0 20,000 40,000 60,000 80,000

Iteration step t

0
0.1
0.2
0.3
0.4
0.5
0.6

C
�t�

(a)

1,000 2,000 3,000 4,000 5,000 6,000 7,000

Iteration step t

0.35

0.40

0.45

0.50

0.55

0.60

C
�t�

(b)

Fig. 1.6: Average clustering coefficient (C(t)) evolution. This figure depicts the average
clustering coefficient (y-axis) at each iteration step (x-axis) over various values for the maximum
peer influence (q). Higher values for q result in stronger peer influence effects. Note that the value
of q also affects the time until convergence. Figure 1.6b illustrates the timespan where the C(t)
is maximal.

existing ties for the node and the memory strength parameter c) defines the
probability to reinforce an existing tie. More precisely, this probability is equal
to c

ki+c
, where ki is the number of current neighbors. Second, if a node wants

to form a new tie, it tries to perform a cyclic closure [73]—by interacting
with a randomly selected neighbor of a neighbor—with the probability p∆,
or a focal closure [74], which emulates homophily (i.e., similar users connect
to each other). The latter is performed with a probability of 1 − p∆, or if
there are no suitable candidates for a cyclical closure. This is, for example,
the case if a node becomes active for the first time.

Figure 1.5 illustrates these mechanics. Figure 1.5a describes the network
at iteration step t = x, where the numbers along the edges represent the tie
strengths and the site of the nodes indicates their intrinsic activity potential.
In this example, the highlighted node (top left) becomes active. It selects the
newly highlighted node (left) in Figure 1.5b as the partner, which becomes
active as due to this interaction. As a result, they reinforce the tie between
them. At the start of the next iteration, the nodes receive peer influence from
their neighbors active in the last iteration (outlines in Figure 1.5b). Note how
the node in the top right corner receives a high amount of peer influence due
to its strong ties.

To prevent the network from becoming fully connected after a sufficient
amount of iterations, every node has a probability to be removed. In this case,
we delete the node from the network and introduce a new node (without any
existing ties). As a result, the total number of nodes in the network remains
constant.
Experiments & Results. We generate synthetic networks with 5 000 nodes
over 75 000 iterations with varying values for the maximum peer influence
parameter (q). To ensure the formation of adequate community structures
in the network we set p∆ = 0.9 and the probability for node-deletion to
pd = 5∗10−5. Further, we fix the parameter for memory strength to favor new
ties (c = 1) and fix the critical peer influence threshold to θ = 0.1 to reflect
the intuition that a small number of active neighbors is sufficient to affect
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the activity of a node to a large extent. Finally, we run each configuration 40
times to account for statistical fluctuations and report average results.

Figure 1.6 illustrates these results. For the first few hundred iterations, the
clustering coefficient (C(t)) is low but rapidly increases until it reaches its
maximum between iteration t = 3 000 and t = 5 000. After this peak, it slowly
declines until the network eventually reaches a stable state. Further, higher
values for q increase the speed at which the maximum is reached but also
result in a lower average clustering coefficient once the network is stable. As
the peer influence mechanism increases the activity in the network, especially
in already formed communities, increases and active nodes motivate their
neighbors to become more active.
Findings. Peer influence is an effective mechanism for the creation of syn-
thetic activity networks. We present a model creating networks that exhibit
similar community structures to real-world networks, such as triadic closures
(three users all connected with each other) [70]. Further, we show that during
the first few iterations the average clustering coefficient increases, indicating
that during the early stages of a network, activity is concentrated on a core of
highly active users. After reaching a peak activity starts to spread out more
evenly throughout the system, indicated by a slow and steady decline of the
average clustering coefficient.

For further details and an analysis of inter-event time distributions (bursti-
ness), see the full paper on the topic by Wölbitsch et al. [75].

1.8 Conclusions

In this chapter, we asked the overarching question what factors govern growth
and decline of activity in collaboration websites and how to evaluate their
robustness and stability.

To this end, we presented and discussed various approaches to investigate
a range of aspects influencing the user dynamics in collaboration websites.
First, we used tests to assess the presence of complex user behavior by ana-
lyzing the nonlinearity of activity time series. Second, we presented a model
based on dynamical systems, incorporating the concepts of loss of motiva-
tion (activity decay) and users affecting their neighbors (peer influence) to
model and simulate activity in a collaboration website. Third, we introduced
a modification to this model to simulate the impact of trolls (spreading nega-
tive peer influence). Fourth, we utilized activity potentials and peer influence
in a generative model to create synthetic activity networks. Collectively, we
summarize our key findings as follows.

Complex user behavior. Our results suggest that user activity varies
across different collaboration websites with some communities exhibit-
ing more signs of nonlinear behavior than others.



18 Kasper et al.

Activity Decay & Peer influence. We find that intrinsic activity decay.
and peer influence serve as viable mechanics to capture and simulate
activity in collaboration websites. Further, we can employ this peer in-
fluence to investigate the impact of troll-users on a system.

Activity Potentials. Lastly, we can extend the concept of user motivation
through the mechanism of activity potentials and utilize this concept in
combination with peer influence to generate synthetic activity networks
that exhibit structures also present in their real-world counterparts.

The work we present in this chapter extends the body of existing research
on dynamics in collaboration websites and may serve as a base for further
research to predict the eventual success or failure of a collaboration website at
an early stage. Finally, we demonstrated how the viability of an approach to
analyze user dynamics in collaboration websites depends on the investigated
aspect and the information available in the data.
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