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Abstract—Over the course of recent years, Radio Frequency
Identification (RFID) technology has been applied in many
different business domains to solve, for example, the problem
of monitoring stock. However, keeping track of the exact (geo-
)locations of items in stock is still an open problem. This is
particularly problematic for logistics, retail as well as warehouses,
where information about relative locations of items can drasti-
cally increase staff efficiency and business process efficacy. In this
paper we set out to tackle the problem of determining relative
distances between RFID tags based on time-differences in read
events, without the introduction of additional hardware. To that
end, we first present a novel approach, which leverages time-
based distances for inferring relative RFID tag distances. We then
qualitatively and quantitatively evaluate our proposed approach
by inferring tag locations for different experimental setups, and
comparing our results to ground truth data. Finally, we present
and discuss the results of a case study, which emulates real-
world conditions of retailers using RFID technology for stock
taking. Our results show that time-differences in read events are
suitable for calculating and approximating the relative position
of RFID tags in several setups. We strongly believe that the
results presented in this paper represent a novel and important
step towards new approaches, which leverage time-differences in
read events for inferring relative tag distances.

Index Terms—RFID, localization, multidimensional scaling

I. INTRODUCTION

The Radio Frequency Identification (RFID) technology is
widely adopted and used in a variety of different applications
in retail [1], logistics [2], security [3], and health care [4],
among others. One of its main features is the ability to
track and identify objects over several meters, without direct
line-of-sight, which builds a solid foundation for practical
applications, such as stocktaking. Further, the costs of these
RFID-based systems are relatively low, which make them
particularly interesting for inventory management in logistics,
retail, and warehouses.
Problem. However, while RFID-based inventory management
is able to solve the problem of monitoring which items are in
stock at any given point in time, keeping track of the exact
(geo-)locations of items is still an open problem [5]. In gen-
eral, staff of retail stores and warehouses conduct stocktakes
using mobile RFID readers, which collect identifiers (i.e., the
Electronic Product Code or EPC) of tagged products and the
timestamps of when each individual tag was read. While this

data suffices for taking stock, the exact (geo-)location of the
read RFID tags is still unknown. In practice, this means that
common tasks, such as the picking of items requested by
customers become tedious and time-consuming, especially if
items are not in their designated locations.

Such misplaced articles can lead to financial losses, as
customers and store or warehouse staff are unable to (quickly)
retrieve these articles. Raman et al. [5] presented a study,
where they showed that customers of a retail store could
not find 16% of items as they were misplaced (e.g., on the
wrong shelf) in the store. Finding such misplaced items on the
sales floor is time-consuming, even for RFID-based inventory
management systems, as they mostly lack the ability to locate
RFID tags.

The localization of misplaced items usually requires ad-
ditional hardware [6] (e.g., antennas or high-power RFID
readers). An approach which circumvents this requirement [7],
leverages the signal strength of RFID read events to estimate
the distance to a tag. However, this approach suffers from
several limitations. First of all, the reader needs to be in
close proximity to the tag in the first place (i.e., UHF RFID
tags commonly used in retail settings can usually only be
read over the range of a few meters using standard mobile
RFID readers). Second, read signals are also inaccurate due
to the fluctuation of the signal strength of RFID tags. Third,
localization via this approach can only be performed for one
RFID tag at a time.
Approach. In this paper we set out to tackle the problem
of determining relative distances between RFID tags based
on time-differences in read events, without the introduction of
additional hardware. Specifically, we leverage information that
is already generated during stocktakes, such as the timestamp
and the received signal strength indication (RSSI) of every
read event, which we use to infer relative (temporal) distances
between RFID tags. As read events can be very noisy (e.g., a
particular RFID tag can be read multiple times due to signal
reflections, even though it is not in focus), we preprocess our
data to estimate the point(s) in time when an RFID tag was in
focus of the mobile reader. Based on this information, we can
infer temporal distances between RFID tags, which we map
into two-dimensional space using Multidimensional Scaling
(MDS). As a result, we obtain relative geospatial information
(i.e., relative distances between RFID tags), which allows us to



locate misplaced items by relating them to the relative position
of other items.
Contributions. This paper is an extended version of our previ-
ous work [8], where we presented two approaches to determine
relative locations of RFID tags, based on the timestamps and
RSSI values of read events. Specifically, we used temporal
distances between read events, which we map to estimated
geometrical distances using MDS. We extend our previous
work by conducting a case study with adapted evaluation
methods, which represent a more realistic and challenging
setup for our approaches. The key contributions of our work
are:

• First, we present a novel approach to leverage time-
differences between read events for inferring relative
RFID tag distances.

• Second, we further extend our approach by incorporating
RSSI values into the calculation of geometrical distances.

• Third, we conduct a case study to better reflect real-world
scenarios for calculating relative distances of RFID tags
using time-differences.

• Fourth, we publish the data1 used in our experiments to
enable researchers not only to reproduce but also develop
additional extensions to our presented approaches.

We strongly believe that the results presented in this paper
represent a novel and very important step towards leveraging
the information of temporal distances for inferring relative
RFID tag distances.

II. RELATED WORK

In this section we highlight related work on positioning
algorithms (see Section II-A) and indoor location systems (see
Section II-B).

A. Positioning Algorithms

Liu et al. [9] analyze different schemes for location estima-
tion. Specifically, triangulation/trilateration and proximity are
applicable to our setup under certain circumstances.
Triangulation/Trilateration. Both, triangulation and trilater-
ation, are methods to position an object using three reference
points. While the former uses the angles between an object and
reference points to estimate the position, the latter takes the
distances between an object and reference points into account.

The distances for the lateration approach are typically
derived from measurements such as time-of-arrival (i.e., the
one-way propagation time of a signal to a receiver) [10],
[11], or received signal strength [10], [12]. For each of
the reference points, the distance approximation creates a
circle with potential locations of the tag. A basic trilateration
approach would be to calculate the intersection of the circles to
determine its position. In contrast to trilateration, triangulation
uses the angle-of-arrival (i.e., the angle from which the signal
arrives at the receiver) instead of the distances to calculate the
positions [13].

1https://github.com/DetegoDS/tag localization

In contrast to work on trilateration, we only consider one
RFID reader, scanning many passive tags. As the reader is the
only active device and the location of the reader is unknown
during our experiments, triangulation or trilateration methods
are not applicable to our problem.
Proximity. Proximity methods are usually implemented with
a dense grid of antennas. If a tag is in the range of an
antenna (i.e., the reader detects the tag), it is considered to
be collocated to this antenna. If multiple readers detect the
tag, the antenna with the highest signal strength is selected.

Song et al. [14], for example, use a proximity-based al-
gorithm to locate materials on construction sites with 20
reference tags arranged in a dense grid, and an RFID reader,
which also leverages GPS to determine its own position. Other
location systems, which use proximity methods are proposed
by Simic and Sastry [15] and He et al. [16].

In this paper we build upon the underlying idea of proximity
based location algorithms to infer relative distances between
RFID tags. However, in our setup we only use a single
mobile RFID reader and passive RFID tags, without the reader
knowing its actual position.

B. Indoor Location Systems

Hightower and Borriello [17] provide a brief introduction
into the problem of indoor localization and provide a taxon-
omy of location systems.

Further, they discuss different techniques for localization,
such as infrared (Active Badge [18]), ultrasound (Active
Bat [19] and Cricket [20]), and computer vision (Easy Liv-
ing [21]).
RFID-based Location Systems. The SpotON system pro-
posed by Hightower et al. [22] was one of the first location
systems relying on RFID technology. However, instead of
using conventional RFID tags they use custom-built active
RFID tags, specifically designed for localization, with the
primary requirement of being able to provide exact signal
strength measurements. In addition to the custom RFID tags,
they use multiple stationary RFID readers, distributed over
space, reporting signal strength of detected RFID tags to a
central server, to triangulate the position of the RFID tag.

Alippi et al. [23] propose a stochastic approach that also
requires multiple readers to cover the area under investigation.
Several other approaches exist, which usually require either a
setup of multiple readers or antennas [6], [24], [25].

The LANDMARC system [26] uses a similar method, but
instead of expensive readers as base stations, they work with
active RFID tags as reference tags. The number of reference
tags to use and where to position them has to be decided based
on the environment for the localization. In their experiments,
the authors used a dense grid of reference tags, where the
position of an object is calculated as a weighted sum of the
coordinates of the k nearest reference tags.

Saab and Nakad [27] estimate the position of a vehicle or a
person in an indoor environment. More specifically, they use
RFID technology and track an RFID reader along a path that
has passive RFID tags next to it. They store the positions of



these tags in a database and estimate the distances between the
reader and the tags using the RSSI of the backscattered signals.
Subsequently, they use the estimated distances to calculate the
position of the reader via trilateration.

Joho et al. [28] propose a probabilistic sensor model that
can be trained using unsupervised learning. The sensor model
specifies the likelihood to get a measurement z given the
orientation x of the antenna and the location lg of tag with
ID g. This probabilistic model p(z|x, lg) can be learned from
data, and using Bayes’ rule the posterior p(lg|x, z) can later be
evaluated. However, due to the vast number of combinations
between antenna orientations and locations of the tag, this
calculation is unfeasible for practical applications. Therefore,
Joho et al. [28] use locations relative to the antenna rather
than absolute locations. As a result, to be able to localize tags
using this model, the position of the reader has to be known at
all times. In their setup, they drive a shopping cart that has the
RFID reader and a laser range scanner mounted on it. They
use laser-based FastSLAM [29] to localize the antenna and
estimate the distances of the tags afterwards.

In contrast to existing work, our approach builds upon the
premise that we can infer relative RFID tag locations only by
leveraging timestamps and RSSI values of read events. Note
that all approaches based on RSSI values are fundamentally
subject to multipath propagation [30], which potentially affects
reading performance and thus, the overall quality of the
obtained results.

III. METHODOLOGY

A. Data Collection & Preprocessing

For all experiments described in this paper, we store (i)
the Unix timestamp in milliseconds, (ii) the EPC encoded
on the RFID tag, and (iii) the RSSI in dBm of the received
signal for each read event. The amount of data that we collect
varies between experiments and depends on the duration of
the experiment, as well as the amount and frequency of read
RFID tags.

For data preprocessing, we first remove all read events of
RFID tags, which are not part of the set of tags used in
our experimental setup. Next, we scale timestamps for each
experiment to start at t = 0, while each following entry
corresponds to the number of elapsed milliseconds since the
beginning of the experiment. Note that we publish our dataset2

to support the development of new approaches that build upon
the presented methodology.

B. Estimating Relative Tag Distances

For estimating relative tag distances we first introduce a
naı̈ve approach—Temporal Distances—which leverages only
the timestamp of each RFID tag read event. Furthermore,
we present an additional approach—RSSI Peaks—which also
leverages RSSI values, targeted towards reducing noisy reads.
Temporal Distances. For our first approach we solely leverage
timestamps of RFID tag read events. Given that distance is

2https://github.com/DetegoDS/tag localization

Fig. 1: Temporal Distances Illustration. This figure illus-
trates the calculation of temporal distances for RFID tag read
events. Bottom: We have highlighted the read events of 4
different RFID tags (vertical bars) over time (x-axis), which is
the foundation for our Temporal Distances approach. For this
approach, we calculate minimum pairwise differences between
the timestamps of all read events of the different RFID tags.
Top: We show the corresponding RSSI values (y-axis) over
the same period of time (x-axis), illustrating our RSSI Peaks
approach. In contrast to the previous method, we first group
RFID tag read events into segments. In this case, we set the
segment separation threshold ∆ = 1, 000 milliseconds. For
example, for Tag 1 (blue), we would obtain 3 segments (from
0 to 2.5, 13 to 14, and 15 to 16 seconds). Due to our stray
read filtering (each segment has to contain at least 5 read
events), we would only obtain one segment for Tag 3 (green)
(from 9 to 11 seconds), as the other segment (starting at t = 3
seconds) only contains 4 read events. Finally, we select the
timestamp corresponding to the center of RSSI maxima per
segment and again calculate minimum pairwise differences
only between the timestamps of these peak RSSI values to
determine temporal distances.

a function of speed and time, we assume that the former is
constant, so that distance equals time scaled by constant speed.
The relative distance between pairs of RFID tags is determined
by the minimum duration (i.e., elapsed milliseconds) between
all read events of these tags (see bottom part of Figure 1). We
see this setup as a very naı̈ve baseline, against which we can
measure other approaches that include additional information.
Temporal Distances and RSSI Peaks. In contrast to Temporal
Distances, we include the RSSI of each read event in our
calculation of relative distances. Specifically, we are interested
in approximating the actual point in time when the mobile
RFID reader points directly towards any given tag; assuming
best reading performance. In theory, this should correspond to
the point in time when the RSSI value reaches its maximum
for a given tag. As depicted in the top of Figure 1, we receive
smaller RSSI values for a tag as it enters the reading field
of the reader. The value increases until it reaches its peak
when both the reader and the RFID tag are aligned (i.e., the
reader points at the RFID tag), and decreases until it leaves the
reading field again. Note that several factors can influence the
magnitude of the RSSI values, such as RF power or orientation
and placement of RFID tags (e.g., many other nearby RFID
tags, or metal surfaces).

To calculate temporal distances leveraging RSSI peaks,



(a) Ground Truth (b) Estimation after MDS (c) Estimation after MDS & Procrustes Analysis

Fig. 2: Methodology. The figures depict the different steps of our methodology. First, we generate a ground truth dataset for
each layout, which we infer from empirical distances between our RFID tags (Figure 2a). Then, we apply MDS on the temporal
distances between our RFID tags (Figure 2b), which yields results invariant to scale, translation and rotation. After applying
Procrustes analysis (i.e., scaling, rotating, flipping and translating) on the estimated coordinates (Figure 2c) we calculate Mean
Absolute Error between RFID tag coordinates for the controlled lab experiments. Additionally, we calculate correlation between
the estimated temporal and empirical distances of our RFID tags.

we first partition the RSSI sequences for each RFID tag
by time-differences larger than a threshold ∆ between read
events (i.e., segment separation threshold in milliseconds).
Hence, we obtain several segments per RFID tag, for which
we determine the timestamp of the RSSI peak values (i.e.,
center of maxima), which we then use for calculating pairwise
minimum differences, instead of using every single read event.
Furthermore, we remove segments with fewer than 5 read
events to minimize noise in our data (i.e., stray read filtering).
Note that our approach is subject to multipath propagation [30]
and results might suffer from noisy RSSI values. At this point,
we leave further investigations into noise minimization open
for future work.

C. Postprocessing

To be able to evaluate our proposed approaches, we first
generate a ground truth for each of our experiments, consisting
of coordinates for each tag in two-dimensional space (see
Figure 2a). We then apply MinMax scaling individually on the
x- and y-coordinates to obtain the scaling factors, which are
the differences between the minimum and maximum values
in each dimension. These scaling factors are later applied on
the estimated distances so that we can compare them to the
placement of the tags in the ground truth.

Next, we apply metric MDS [31], [32] on our estimated
RFID tag distances to obtain estimated coordinates for each
individual RFID tag. Specifically, MDS is a method for visu-
alizing data based on similarity or dissimilarity measurements,
referred to as proximities. Given the proximity proxies of
a set of points, MDS finds a geometrical representation of
these points so that the pairwise distances match the proxy
measurements as close as possible (see Figure 2b).

We then normalize the estimated coordinates using MinMax
scaling and receive coordinate values in the range of 0 and 1.
To evaluate our results we translate the estimated and ground
truth coordinates, such that the center of mass of both sets

of coordinates are in the point of origin. However, as the
solutions of MDS are invariant with respect to rotation we
additionally apply Procrustes analysis [33] to determine the
required rotation which minimizes the error to the ground
truth. Finally, we apply the ground truth scaling factors on
all coordinates.

IV. CONTROLLED LAB EXPERIMENTS

We start by conducting controlled lab experiments to mea-
sure the impact of several scenarios on our approach. To that
end, we control different experimental parameters such as the
walking patterns or the placement of the RFID tags (layout).

A. Setup & Evaluation

We conduct all controlled lab experiments in a large room,
containing several wooden and metal constructions, which
largely represent a real-world setting with high potential for
noisy reads. Further, we use a mobile ZEBRA RFD8500 RFID
reader with maximum power level (30 dBm) configured to use
Session 0 in all presented experiments.

For our experiments, we attach RFID tags in groups of ten
on polystyrene panels, where each panel simulates a group
of products of the same class. We then place the panels on
wooden tables and arrange them in different layouts. Note that
RFID tags with the same color in our visualization are placed
on the same panel.
Two-Dimensional Layout (2D). For this layout we arrange
four tables in a rectangular shape, and distribute seven panels
(70 RFID tags) across them, with one table only containing a
single panel. Figure 3a shows a photograph of the setup on the
left, and the corresponding ground truth dataset on the right.
Asymmetric Two-Dimensional Layout (Asymmetric 2D).
To evaluate if we can use temporal distances to recover depth
information, we adapt the 2D Layout by adding an additional
panel (i.e., 80 RFID tags in total) and putting one table behind
another one (i.e., having an asymmetric layout with two panels



(a) Two-Dimensional Layout (b) Asymmetric Two-Dimensional Layout (c) Three-Dimensional Layout

Fig. 3: Layout of Experiments. The figures depict the layouts (left) and their corresponding ground truth datasets (right),
which we use to test our proposed methodology under different conditions. Figure 3a depicts a Two-Dimensional Layout, with
all panels aligned in a rectangular shape. The second layout, depicted in Figure 3b, shows the Asymmetric Two-Dimensional
Layout, where two panels are put behind two other panels. Finally, Figure 3c depicts the Three-Dimensional Layout, where
two panels are stacked upon two other panels. Note that due to the two-dimensional representation of our ground truth, panels
are put on top of each other, resulting in overlapping markers in Figure 3c.

in the front and two in the back). See Figure 3b for a picture
of the setup and the corresponding ground truth.
Three-Dimensional Layout (3D). In contrast to the previous
layouts, we are now interested in measuring the impact of
differences in height on temporal distances. To simulate this
setup, we use 8 panels (80 RFID tags) and stack two tables—
with two panels each—on top of each other (see Figure 3c).
In any two-dimensional setting, RFID tags placed on top of
each other will overlap in coordinates, which is also true for
our corresponding ground truth dataset. Note that our ground
truth and estimated coordinates for this layout are in two-
dimensional space.

For every layout, we perform multiple experiments (see
# iter in Table I). In particular, we repeat all 2D Layout and
the Asymmetric 2D Layout experiments three times, doing
one iteration, two iterations, and four iterations, while we
only conduct one and two iterations for the 3D Layout, as
four iterations perform similar to two iterations in all previous
experiments. Note that once we start one experiment, we
activate the RFID reader and continuously scan for RFID
tags, while walking along the tables in a clockwise, circular

TABLE I: Circular Walk Dataset. For each layout we
conduct several experiments (# iter, defining how often we
follow the circular walk). We perform all experiments three
times and list the median number of read events (# Events),
the median number of read events by tag (# Events per
Tag) and the median duration (Duration) of the experiment
in the corresponding row. Further, we depict the median
number of read RFID tags (Tags Read) and their corresponding
percentage of overall RFID tags read.

Layout # iter # Events # Events Duration Tags Read
per Tag

2D
1 2,769 41 20s 66 (94%)
2 6,010 85 46s 68 (97%)
4 8,841 126 86s 70 (100%)

Asymmetric 2D
1 1,486 26 22s 43 (53%)
2 3,710 46 41s 58 (72%)
4 4,718 62 80s 61 (76%)

3D 1 2,334 36 22s 65 (81%)
2 5,054 63 48s 75 (93%)

Fig. 4: Circular Walk Reading Pattern. For every different
layout (i.e., 2D, Asymmetric 2D and 3D), we try to read RFID
tags following always the same circular path (see arrow) for
multiple repetitions (i.e., iterations).

motion (i.e., a circular walk; see Figure 4 for a schematic of
the Circular Walk Layout and Table I for an overview of the
characteristics of the performed experiments).

We evaluate our experiments based on the obtained ground
truth data, which allows us to calculate Mean Absolute Error
(MAE) in Euclidean distance. For n tags, we calculate the
MAE of the coordinates as follows:

MAE =
1

n

n∑
i

‖ci − ĉi‖, (1)

where ‖·‖ denotes the Euclidean distance, and ci and ĉi the
ground truth and the estimated coordinate vector of the ith

RFID tag. Note that we neglect RFID tags that were not read
during our experiments for the calculation of MAE.

Additionally, we calculate Pearson correlation coefficient
between the ground truth and estimated distances. High
correlation coefficients for our experiments indicate similar
(relative) distances between the RFID tags in the ground truth
and estimated distances.

Note that we set the segment separation threshold for all
controlled lab experiments to ∆ = 1, 000 milliseconds, so that



(a) Single Iteration (b) Multiple Iterations (c) Asymmetric 2D Layout (d) 3D Layout

Fig. 5: Circular Walk Results. This Figure depicts the results for a selection of our circular walk experiments. When only
conducting a single iteration, without reading panels of RFID tags multiple times, our proposed methodology maximizes the
distance between the first and the last read panel (see Figure 5a). Once information between the distance of the last and the
first panel is available (i.e., for 2 and more iterations), positioning of the RFID tags works within reasonable error margins
(see Figure 5b). Our method produces a larger error when trying to reconstruct depth information (see Figure 5c) as we ignore
relative differences of RSSI values between RFID tags read close to each other. In contrast, when reading RFID tags that are
positioned on top of each other (see Figure 5d), we achieve better results, as RSSI values are not needed (in two-dimensional
space) to position RFID tags.

only roughly 5% of all observed time-differences introduce a
new partition.

B. Results & Discussion

Two-Dimensional Layout. As depicted in Figure 5a, our
approach struggles to correctly infer relative distances between
RFID tags after only a single iteration (i.e., one round, without
reading any of the starting RFID tags at the end of the exper-
iment again). Once we add the missing temporal distances
between the last and the first panel (e.g., by continuing the
circular walk and reading the first panel twice), our proposed
approach manages to group RFID tags close to their actual
location in the ground truth (see Figure 5b). Specifically, we
achieve an MAE of 28.36 cm for the Temporal Distance
approach with the 2D Layout after two iterations, and a
correlation coefficient of r = 0.94 (see 2D Layout in Table II).
The RSSI Peaks approach performs similar with an MAE of
29.18 cm after four iterations and r = 0.95.

TABLE II: Circular Walk Results. In this Table we describe
the results of our three layouts (rows), the different numbers
of iterations (# iter) and the two implemented approaches
(Temporal Distance and RSSI Peaks columns) in the form
of MAE and the correlation coefficient r. We calculate MAE
between the coordinates of our ground truth and estimated
RFID tag coordinates, and the correlation coefficient between
the temporal distances and the distances in our ground truth.

Layout # iter Temporal Distance RSSI Peaks
MAE r MAE r

2D
1 126.80 0.75 101.96 0.73
2 28.36 0.94 36.08 0.92
4 28.65 0.94 29.18 0.95

Asymmetric 2D
1 108.11 0.65 103.08 0.65
2 88.92 0.78 86.86 0.79
4 89.91 0.64 94.02 0.63

3D 1 91.57 0.78 88.18 0.76
2 46.91 0.74 40.92 0.83

Discussion. Due to the underlying mechanisms of how we
infer distances, it is detrimental for all our approaches that
we create overlaps between tags that we have read at the end
and the start of each experiment. Without these overlaps, our
proposed methodology maximizes the distance between the
first and last group of read RFID tags, resulting in a diagonal
line in two-dimensional space, as depicted in Figure 5a.
However, while MAE between the estimated and ground truth
coordinates of our RFID tags is rather high (126.8 cm), we
can already clearly distinguish the different panels (see colors
of estimated RFID tag coordinates). If we provide distance
information between the last and the first panel (i.e., after
two iterations), we can infer the circular layout from our data
which now allows us to position RFID tags closer to their
actual positions, with an MAE of 28.36 cm.

Additionally, we increase the correlation coefficient between
our ground truth and estimated RFID tag distances from r =
0.75 to r = 0.95. This means that we can observe similar
(relative) distances between our RFID tags in the ground truth
and the estimated distances.
Asymmetric Two-Dimensional Layout. After only one it-
eration we obtain an MAE of 108.11 cm and a correlation
coefficient of r = 0.65 for our Temporal Distances approach.
In contrast to our 2D Layout, when running the experiment for
multiple iterations, MAE for Temporal Distances improves by
19.19 cm to an error of 88.92 cm with a correlation coefficient
of r = 0.78, with the RSSI Peaks approach performing
similarly. When inspecting Figure 5c, we can see that some
RFID tag panels of our estimated tag locations are still easily
distinguishable (e.g., yellow, brown, grey, and pink), while the
exact positions of the panels placed behind each other (i.e.,
the purple, green, blue, and red panels) appear to be harder to
reconstruct with our approach.
Discussion. As we calculate temporal distances only based
on the difference in time between read events of the corre-
sponding RFID tags, reconstructing depth-information for this



layout is very hard. Specifically, when standing in front of
the four shifted panels (i.e., purple, green, blue, and red), we
receive read events of RFID tags from all four panels, which
is also visible in Figure 5c. One solution to better tackle this
problem could be to add an additional stream of information,
such as relative differences in RSSI of all RFID tags read
around the same time, to properly infer depth information
for the calculation of relative distances. However, given that
RSSI is very unreliable, further research and experiments are
warranted to validate if and to what extent results for this setup
can be improved. Further, we can see from our experiments
that more than two iterations do not help to improve the results,
most likely due to the introduction of additional noise.
Three-Dimensional Layout. We achieve the best MAE (40.92
cm) and correlation coefficient (r = 0.83) for this layout after
two iterations with the RSSI Peaks approach. As depicted in
Figure 5d, we can detect the different RFID tag panels. As
outlined in the description of this layout, there are two RFID
tag panels (i.e., green and red as well as blue and purple) that
overlap each other in this setup. According to our results, we
can place these two clusters in very close proximity in our
ground truth.
Discussion. Due to the way our approach handles differences
in height, we can achieve better results for MAE (46.91 cm)
and correlation coefficients (r=0.83) than for the Asymmetric
2D Layout, which also indicates that differences in height
appear to be less problematic for inferring temporal distances
than differences in depth.

V. CASE STUDY

The results of our controlled experiments show promising
first results, as they allow us to infer RFID tag positions with
an MAE of 28.36 cm (see Section IV-B). Nevertheless, due
to the inherent limitations of how our approach calculates tag
distances, and also from a practical point of view, we are more
interested in identifying relative locations between individual
RFID tags as well as groups of RFID tags. As highlighted
in Section IV-B, we are able to detect groups of items that
are also close to each other in the ground truth throughout
all of our experiments, which is evident by the correlation we
achieve in our first experiments.

However, compared to real-world scenarios, our previous
setups and layouts of our experiments are rather constrained,
as the stock of a typical brick-and-mortar store consists of
tens of thousands of items with sophisticated store layouts as
well as predetermined product placements. To further evaluate
the utility of our presented methodology, we have created a
setup that better reflects real-world conditions, by (i) including
shelves and tables (see Figure 6b for a schematic), (ii) using
an order of magnitude more tags, and (iii) following no
predetermined walking patterns.

A. Setup & Evaluation

Similar to our previous experiments, we are using the same
RFID reader. However, the panels are now made of cardboard
and contain 25 to 36 RFID tags each (see Figure 6a) to

simulate stacks of the same product. Further, we conduct our
experiments in Session 0, as well as in Session 1.

For our case study, we have distributed a total of 27 panels
(colored circles in Figure 6b), holding a total of 915 RFID
tags, across 7 tables (black dotted rectangles in Figure 6b)
and 5 shelves (black solid rectangles in Figure 6b; overlapping
panels in shelves are plotted with a small jitter for visualization
purposes).

For our case study we tasked three participants to read
as many RFID tags as possible when walking through our
case study setup. Note that the only constraint imposed on
our participants was the usage of the same starting position
(i.e., at panel 27 in the bottom left of Figure 6), which is
not a requirement of our approach, but allows us to easily
compare the results of the different experiments. Similar to
our previous experiments, we collected the RFID read events
of each participant while walking through our setup, with the
objective of reading as many tags as possible. In contrast to
our previous experiments with fixed walking patterns, each
participant selected a path based on personal intuition and
tried to read RFID tags as efficiently as possible. In total,
we asked three different individuals to repeat our experiment
three times, resulting in a total of 9 iterations (see Table III).

Due to the large number of RFID tags in our case study
setup, the construction of a ground truth dataset based on co-
ordinates of individual RFID tags was not feasible. Instead, we
use the coordinates of the 27 panel centers as approximation.

We only present results for our RSSI Peaks approach (see
Section III-B), as it performed better than our Temporal
Distances approach. Note that we set the segment separation
threshold to ∆ = 15, 000 milliseconds for the case study,
which better reflects the increased distances between panels.

Furthermore, we alter our evaluation metrics for this case
study from MAE of RFID tag locations to the correlation
of relative distances and cluster assignment. Specifically, we
evaluate if we can group RFID tags to the same panel, using
k-Means clustering to infer k = 27 clusters of RFID tags in
our estimated RFID tag positions. We compare the cluster-
assignment, as well as the relative distances between tags and

TABLE III: Case Study Dataset. For our case study, each
of three different individuals walked through our setup three
times, trying to read as many RFID tags as possible. For each
iteration we show the session configuration of the RFID reader,
the number of RFID tags that were read, the median number
of read events per RFID tag and the duration of the iteration.

Iteration Session #Events # Events
per Tag Duration # Tags Read

1 0 4,847 5 85s 863 (94%)
2 1 3,461 3 72s 886 (96%)
3 0 4,484 4 77s 881 (96%)
4 1 3,513 4 70s 890 (97%)
5 1 3,011 3 66s 875 (95%)
6 1 3,093 3 62s 890 (97%)
7 0 4,111 4 66s 849 (92%)
8 1 2,892 3 58s 887 (96%)
9 1 3,059 3 63s 882 (96%)



(a) Case Study Panels (b) Case Study Schematic (c) Estimated 2D Locations

Fig. 6: Case Study Panel, Schematic & Estimated 2D Locations. For our case study we use a total of 27 panels (a), with
each panel holding between 25 to 36 RFID tags. Panels are represented as colored circles in (b), while shelves/tables are
represented by solid/dotted black rectangles. We print overlapping panels on shelves (e.g., same position but different height)
with a jitter to make them visible in this schematic. The red lines represent physical walls. Each circle in (c) represents a
single RFID tag, with colors assigned according to the corresponding panel of the ground truth. The x- and y-axes represent
our estimated relative 2D locations. We can observe that RFID tags with the same color also form clusters in our estimation,
however, we are not able to infer exact geo-locations (cf. (b)).

clusters to the ground truth.
To that end, we use three different entropy-based clustering

measures [34] which can be used to intuitively evaluate the
computed cluster assignments. First, we calculate homogeneity
h, which is a bounded measure (between 0.0 and 1.0; higher
is better) that reflects the number of different classes in a
single cluster. Preferably, a cluster should only contain a
single class (i.e., a cluster corresponding to a panel should
only contain RFID tags actually belonging to that panel),
which would correspond to a homogeneity score of h = 1.0.
Furthermore, we calculate the completeness score c for our
cluster assignments, which is bounded as well (i.e., between
0.0 and 1.0; higher is better). This metric measures how many
members of a class are assigned to the same cluster. In our
case, all RFID tags located on one panel should be assigned
to the same cluster. As homogeneity and completeness are
opposing metrics which can widely differ from each other, we
also calculate the validity score (v-score v), which is defined
as the harmonic mean of homogeneity h and completeness c
(i.e., v = 2·c·h

c+h ) and has the same boundaries as the two other
metrics.

For calculating the Pearson correlation coefficient between
our ground truth and the estimated RFID tag locations we first
set the coordinates of each RFID tag in our ground truth to
the center of its corresponding panel. Then, we calculate and
set the coordinates of each RFID tag to the mean estimated
coordinates of the RFID tags on the same panel, which we
have obtained via k-Means. Finally, we use the Euclidean
distances between all RFID tags of our ground truth and our
estimation to calculate the Pearson correlation coefficient.

B. Results & Discussion

Due to the more complex setup and the underlying mech-
anisms of how our approach works—essentially inferring
distances based on temporal differences without anchors to the
actually traversed paths—we expect multi-dimensional scaling
to yield results of limited utility for this case study.

As can be seen in Figure 6c, the inferred locations of
the RFID tags only marginally represent the ground truth
depicted in Figure 6b. Specifically, without additional infor-
mation, multidimensional scaling can not reconstruct structural
obstacles and complex path traversals as only the elapsed times
between RSSI peaks of RFID tags are considered for distance
estimation. In general, most of the RFID tags are located
along a distinguishable line, indicating the timely differences
of when the actual panels were read in time. However, some
RFID tags are located in the center of the visualization,
indicating similar distances to several other clusters. Note
that the wall depicted in Figure 6b is not shielded, meaning
that bleed-through reads are possible. In fact, after manual
inspection of our data, we find that several bleed-through, as
well as stray reads occurred when reading RFID tags along
the wall, which are responsible for the estimated locations of
the RFID tags in the center of our visualization (see Figure 7).

While we can’t use absolute distances for RFID tag lo-
calization, the calculated median (max) Pearson correlation
coefficient of r = 0.62 (0.67) for Session 0 and r = 0.64
(0.83) for Session 1 indicate that we can still use relative
distances between RFID tags/panels to realize several real-
world use-cases. For example, optimizing picking paths of
retail staff when replenishing articles on the salesfloor (i.e.,
smart picking lists) or identifying misplaced items due to item
neighborhoods, or guiding store staff towards a specific RFID
tag by using the mobile RFID reader as “radar”, leveraging
the relative distance information of the RFID tags.

Some of the mentioned real-world applications depend on
properly detecting “stacks of items” (i.e., clusters in the form
of a single panel in our case study) in addition to relative
distances between RFID tags. Hence, to evaluate the utility
of our results for said applications, we apply k-Means to
the obtained RFID tag coordinates with a predefined set of
k = 27 clusters (i.e., the number of panels we used in our
case study). We receive clusters that are rather homogeneous
(homogeneity score of h = 0.55) and complete (completeness



Fig. 7: RSSI Read Events by Panel over Time. For our case study we depict the RSSI read events per EPC for each panel
for an exemplary experiment. Due to the irregular walking pattern as well as increased walking distances we set the segment
separation threshold to ∆ = 15, 000 milliseconds.

score of c = 0.56), resulting in a v-score of v = 0.55. For
baseline comparison we randomly assign clusters and obtain
a v-score of v = 0.13 (with homogeneity and completeness
both 0.13).

These results indicate that we can potentially use our cluster
assignments and the distances between the clusters to identify
outliers, which translates into the identification of misplaced
articles in a retail environment.

VI. CONCLUSIONS & FUTURE WORK

In this paper we have demonstrated a novel methodology
to infer relative distances between RFID tags leveraging time-

based differences in read events. Specifically, our results
indicate that, depending on the layout of our experiments, we
can infer positions of RFID tags with an MAE of up to 28.36
cm and a correlation coefficient of up to r = 0.95 for our
controlled lab experiments. Further, we have shown that we
are able to detect groups of RFID tags, which are put in close
proximity to each other in our ground truth (i.e., the different
panels). When adding RSSI values to reduce stray reads, we
were able to achieve similar, for certain setups even better
results than when only considering temporal distances.

Finally, we conduct a case study with a larger number



of RFID tags and additional structural complexity, where
we tasked three participants to read as many RFID tags as
possible.

We find that our suggested approach yields promising
results, warranting further investigations to evaluate its perfor-
mance in real-world retail applications. Specifically, we could
optimize picking paths of retail staff when replenishing articles
or identify misplaced items due to item neighborhoods (i.e.,
clusters).

For Future Work we intend to evaluate our approach in a
real-world scenario, which we expect to be more challenging
due to an even larger number of RFID tags. Moreover, we
additionally plan on including relative differences between
RSSI values of simultaneously read RFID tags to better reflect
depth information. Further, we are interested in incorporating
additional data of sensors, such as accelerometer or gyroscope,
available in the mobile handhelds into the calculation of
temporal distances.

We strongly believe that the methodology and dataset3

presented in this paper will build the foundation for an array of
novel RFID tag localization techniques, all based on temporal
distances.
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